If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w^2-50w+7=0
a = 7; b = -50; c = +7;
Δ = b2-4ac
Δ = -502-4·7·7
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-48}{2*7}=\frac{2}{14} =1/7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+48}{2*7}=\frac{98}{14} =7 $
| 8y-17=-9y | | 7w+6+2w=-3(w+2) | | -n-13=21 | | 13=s3+ 12 | | 10(x-1)+4x+x+4=39 | | 13=s3+12 | | 5x2-26x+24=0 | | 6/x=18/30 | | -2w-7-10w=41 | | 47k^2+6k=0 | | 8=b÷7 | | 8.3+0.25w=-23.7 | | h+80=-5 | | 18=6+4c | | f+99=704 | | (7x+5)+(11x+3)= | | 6x+5=12+2x | | 1.1=5.6-0.9c | | 68+4x+8=180 | | 4(x-2)+4x=6x-16 | | 7x+20=A | | g+412=806 | | -2x+21=19 | | 6x+22=-3x+3 | | 7x+4=-7x+4 | | 2377500+30x=3000000 | | 2a+12+4+2a+8=2a+8+12 | | 589=q+273 | | (5+x)x-2=6 | | (x-2)+2x=-3.5 | | -2(x-5)=8x-10 | | 589=a+273 |